Get Answers to all your Questions

header-bg qa

If x^{m}\cdot y^{n}= \left ( x+y \right )^{m+n}, then dy/dx \: is

  • Option 1)

    \frac{y}{x}

  • Option 2)

    \frac{x+y}{xy}

  • Option 3)

    xy

  • Option 4)

    \frac{x}{y}

 

Answers (1)

best_answer

As we learnt in 

Chain Rule for differentiation (indirect) -

Let  y = f(x)  is not in standard form then 

\frac{dy}{dx}=\frac{dy}{du}\times \frac{du}{dx}

ex:\:\:y=sin(ax+b)

Let\:\;u=(ax+b)

then\:\:y=sin \:u

so\:\:\frac{dy}{du}=cos \:u\:\:and\:\:\frac{du}{dx}=a

\therefore \frac{dy}{dx}=\frac{dy}{du}\times \frac{du}{dx}=a\:cos \:u

=a\:cos(ax+b)

 

- wherein

Where\;\:y=f(u)\:\;and\;\;u=f(x)

 

 x^m.y^n =(x+y)^{m+n}

m\:log\:x +n\:log\:y =(m+n)log(x+y)

\frac{m}{x}+\frac{n}{y}\frac{dy}{dx}=\frac{m+n}{n+y}(1+\frac{dy}{dx})

\frac{m}{x}-\frac{m+n}{n+y}=\frac{dy}{dx}[\frac{m+n}{n+y}-\frac{n}{y}]

=\frac{mx+my-mn-nx}{x(n+y)}=\frac{dy}{dx}\left[\frac{my+ny-nx-ny}{y(x+y)} \right ]

\frac{dy}{dx}=\frac{y}{x}


Option 1)

\frac{y}{x}

Correct

Option 2)

\frac{x+y}{xy}

Incorrect

Option 3)

xy

Incorrect

Option 4)

\frac{x}{y}

Incorrect

Posted by

Plabita

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE