A signal A\; cos\omega t is transmitted using v_{_{0}}sin\omega _{0}t as carrier wave. The correct amplitude modulated (AM) signal is :

  • Option 1)

    v_{0}sin\omega _{0}t+\frac{A}{2}sin\left ( \omega _{0}-\omega \right )t+\frac{A}{2}sin\left ( \omega _{0}+\omega \right )t

     

     

     

     

  • Option 2)

     v_{0}sin\left [ \omega _{0}\left ( 1+0.01Asin\omega t \right )t \right ]

  • Option 3)

    \left ( v_{0}+A \right )cos\omega t\; sin\omega_{0}t

  • Option 4)

     \left ( v_{0} +A\right )cos\omega t\; \; sin\omega _{0}t

 

Answers (1)

Amplitude modulated signal

=E_{c}sin\omega _{c}t +\frac{mE_{c}}{2}cos \left ( \omega _{c}-\omega _{m} \right )t

                            -\; \frac{mE_{c}}{2}cos \left ( \omega _{c}+\omega _{m} \right )t

E_{c}=amplitude\; of \; carrier\; wave=V_{0}

m=\frac{E_{m}}{E_{c}}=\frac{A}{V_{0}}

there for

AM signal is given by

V_{0}sin\omega _{0}t+\frac{A}{2}sin\left ( \omega _{0}-\omega \right )t+\frac{A}{2}sin \left ( \omega _{0}+\omega \right )t


Option 1)

v_{0}sin\omega _{0}t+\frac{A}{2}sin\left ( \omega _{0}-\omega \right )t+\frac{A}{2}sin\left ( \omega _{0}+\omega \right )t

 

 

 

 

Option 2)

 v_{0}sin\left [ \omega _{0}\left ( 1+0.01Asin\omega t \right )t \right ]

Option 3)

\left ( v_{0}+A \right )cos\omega t\; sin\omega_{0}t

Option 4)

 \left ( v_{0} +A\right )cos\omega t\; \; sin\omega _{0}t

Most Viewed Questions

Preparation Products

Knockout JEE Main (Six Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 9999/- ₹ 8499/-
Buy Now
Knockout JEE Main (Nine Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 13999/- ₹ 12499/-
Buy Now
Test Series JEE Main 2024

Chapter/Subject/Full Mock Tests for JEE Main, Personalized Performance Report, Weakness Sheet, Complete Answer Key,.

₹ 7999/- ₹ 4999/-
Buy Now
JEE Main Rank Booster 2023

Booster and Kadha Video Lectures, Unlimited Full Mock Test, Adaptive Time Table, Faculty Support.

₹ 9999/- ₹ 6999/-
Buy Now
Knockout JEE Main (One Month Subscription)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, Faculty Support.

₹ 7999/- ₹ 4999/-
Buy Now
Boost your Preparation for JEE Main 2021 with Personlized Coaching
 
Exams
Articles
Questions