If m is the minimum value of k for which the function f(x)=x\sqrt{kx-x^{2}} is increasing in the interval \left [ 0,3 \right ] and M is the maximum value of f in \left [ 0,3 \right ] when k=m, then the ordered pair \left ( m,M \right ) is equal to : 


 

  • Option 1)

    \left ( 4,3\sqrt{3} \right ) 

  • Option 2)

       \left ( 3,3\sqrt{3} \right )     

  • Option 3)

      \left ( 5,3\sqrt{6} \right )           

  • Option 4)

    \left ( 4,3\sqrt{2} \right )

 

Answers (1)
P Plabita

f(x)=x\sqrt{kx-x^{2}}

f'(x)=3kx-4x^{2}\cdot \frac{1}{2\sqrt{k-x^{2}}}

For  f'(x)\geqslant 0

kx-x^{2}\geqslant 0

x^{2}-kx\leq 0

x\left ( x-k \right )\leq 0                                                             so x\equiv \left [ 0,3 \right ]

+ve\: \: \: \: \: x\geqslant 3

&  3kx-4x^{2}\geqslant 0

4x^{2}-3kx\leq 0

4x\left ( x-\frac{3k}{4} \right )\leq 0

x-\frac{3k}{4}\leq 0                                                minimum value of x=3

3-\frac{3k}{4}\leq 0

k\geq 4

minimum value of k is m=4

f(x)=x\sqrt{kx-x^{2}}

           =3\sqrt{4\times 3-3^{2}}

           =3\sqrt{3},\: \: \: \: \: \: M=3\sqrt{3}

\left ( 4,3\sqrt{3} \right )


Option 1)

\left ( 4,3\sqrt{3} \right ) 

Option 2)

   \left ( 3,3\sqrt{3} \right )     

Option 3)

  \left ( 5,3\sqrt{6} \right )           

Option 4)

\left ( 4,3\sqrt{2} \right )

Exams
Articles
Questions