The tangents to the curve y=(x-2)^{2}-1 at its points 

of intersection with the line x-y=3 , intersect at the point :

  • Option 1)

    (\frac{5}{2},1)

  • Option 2)

    (-\frac{5}{2},-1)

  • Option 3)

    (\frac{5}{2},-1)

  • Option 4)

    (-\frac{5}{2},1)

 

Answers (1)

(x-2)^{2}-1=x-3

=>x=2,3

Clearly, A(2,-1)  and  B(3,0)

Tangent to Parabola at B :

To find slope, differentiate the given curve 

\frac{dy}{dx}=2(x-2)

(\frac{dy}{dx})_{(3,0)}=2

Equation of tangent at B : y-0=2(x-3)

                                     => y=2x-6................(1)

Equation of tangent at A : y=-1.........................(2)

Clearly,(1) and (2) intersect at  (\frac{5}{2},-1).

 


Option 1)

(\frac{5}{2},1)

Option 2)

(-\frac{5}{2},-1)

Option 3)

(\frac{5}{2},-1)

Option 4)

(-\frac{5}{2},1)

Preparation Products

Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
Test Series JEE Main April 2021

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 6999/- ₹ 4999/-
Buy Now
JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Test Series JEE Main April 2022

Take chapter-wise, subject-wise and Complete syllabus mock tests and get an in-depth analysis of your test..

₹ 6999/-
Buy Now
Boost your Preparation for JEE Main 2021 with Personlized Coaching
 
Exams
Articles
Questions