Get Answers to all your Questions

header-bg qa

\vec{a}=3\hat{i}-5\hat{j}\;\; and\;\; \vec{b}=6\hat{i}+3\hat{j}  are two vectors and \vec{c} is a vector such that \vec{c}=\vec{a}\times \vec{b} then \left | \vec{a} \right |:\left |\vec{b} \right |:\left | \vec{c} \right |=

  • Option 1)

    \sqrt{34}:\sqrt{45}:\sqrt{39}

  • Option 2)

    \sqrt{34}:\sqrt{45}:39

  • Option 3)

    34:39:45

  • Option 4)

    39:35:34

 

Answers (1)

best_answer

As we learnt in 

Vector Product of two vectors(cross product) -

If \vec{a} and \vec{b} are two vectors and \Theta is the angle between them , then \vec{a}\times \vec{b}=\left |\vec{a} \left | \right |\vec{b} \right |Sin\Theta \hat{n}

- wherein

\hat{n} is unit vector perpendicular to both \vec{a} \: and \: \vec{b}

 

 \vec{a}\times \vec{b}\:=\:39\vec{k}\:=\:\vec{c}

\left | \vec{a} \right |\:=\:\sqrt{34}\:;\:\left | \vec{b} \right |\:=\:\sqrt{45}\:;\:\left | \vec{c} \right |\:=\:39

Ratio = \sqrt{34}:\sqrt{45}:39

 


Option 1)

\sqrt{34}:\sqrt{45}:\sqrt{39}

This option is incorrect.

Option 2)

\sqrt{34}:\sqrt{45}:39

This option is correct.

Option 3)

34:39:45

This option is incorrect.

Option 4)

39:35:34

This option is incorrect.

Posted by

divya.saini

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE