Get Answers to all your Questions

header-bg qa

 For a simple pendulum, a graph is plotted between its kinetic energy (KE) and potential energy (PE) against its displacement d. Which one of the following represents these correctly ?

(graphs are schematic and not drawn to scale)

  • Option 1)

  • Option 2)

  • Option 3)

  • Option 4)

 

Answers (1)

As we learnt in

Kinetic energy in S.H.M. -

K.E.= \frac{1}{2}mu^{2}\\ \: \: \: = \frac{1}{2}m\left ( A^{2} -x^{2}\right )\omega ^{2}

 

- wherein

K.E.= \frac{1}{2}K\left ( A^{2}-x^{2} \right ) \\K= m\omega ^{2}

 

 For a simple pendulum variation K.E. and P.E. with displacement d is

K.E.=\frac{1}{2}m\omega^{2}(A^{2}-d^{2})

P.E.=\frac{1}{2}m\omega^{2}d^{2}

if d = 0  K.E.=\frac{1}{2}m\omega^{2}A^{2}        P.E.= 0

if  d\pm A     K.E. = 0         P.E.=\frac{1}{2}m\omega^{2}A^{2}

\therefore   Graph 2 represents the variation correctly. 

Correct option is 2.

 


Option 1)

This is an incorrect option.

Option 2)

This is the correct option.

Option 3)

This is an incorrect option.

Option 4)

This is an incorrect option.

Posted by

Vakul

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE