Get Answers to all your Questions

header-bg qa

The solution for x of the equation  \int_{\sqrt{2}}^{x}\; \frac{dt}{t\sqrt{t^{2}-1}}=\frac{\pi }{2}     is

  • Option 1)

    \frac{\sqrt{3}}{2}\;

  • Option 2)

    \; 2\sqrt{2}\;

  • Option 3)

    \; 2\;

  • Option 4)

    \; \pi

 

Answers (1)

best_answer

As learnt in cocept

Integration of Rational and irrational function -

Integration in the form of : 

(i) \int \frac{dx}{x^{2}+a^{2}} (ii) \int \frac{dx}{x^{2}-a^{2}} (iii) \int \frac{dx}{a^{2}-x^{2}}

(iv) \int \frac{dx}{\sqrt{x^{2}+a^{2}}} (v) \frac{dx}{\sqrt{x^{2}-a^{2}}} (vi) \frac{dx}{\sqrt{a^{2}-x^{2}}}

-

 

 A=\int_{\sqrt{2}}^{x}\frac{dt}{t\sqrt{t^2 -1 }} =[sec^{-1}t]^x_{\sqrt{2}}

As per the formula of integration

Given [sec^{-1}t]^x_{\sqrt{2}} = \frac{\pi }{2}

sec^{-1}x-{sec^{-1}\sqrt{2}} = \frac{\pi }{2}

sec^{-1}x = \frac{\pi }{2}+ \frac{\pi }{4} = \frac{3\pi}{4}

x = sec\frac{3\pi }{4} =\:-\sqrt{2}


Option 1)

\frac{\sqrt{3}}{2}\;

Option 2)

\; 2\sqrt{2}\;

Option 3)

\; 2\;

Option 4)

\; \pi

Posted by

prateek

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE