Get Answers to all your Questions

header-bg qa

The area of the bounded region enclosed by the curve \mathrm{y=3-\left|x-\frac{1}{2}\right|-|x+1| \,\,and \: the \: x-axis}    is:

Option: 1

\frac{9}{4}


Option: 2

\frac{45}{16}


Option: 3

\frac{27}{8}


Option: 4

\frac{63}{16}


Answers (1)

best_answer

y=3-\left|x-\frac{1}{2}\right|-|x+1|

\mathrm{For \: x<-1}

\mathrm{y =3-\left(\frac{1}{2}-x\right)-(-1-x) }\\

\mathrm{=3+x-\frac{1}{2}+x+1} \\

\mathrm{=2 x+\frac{7}{2}}

\mathrm{For \: -1 \leq x<\frac{1}{2} }\\

\mathrm{y=3+x-\frac{1}{2}-x-1=\frac{3}{2}} \\

\mathrm{For \: x \geqslant \frac{1}{2}}\\

\mathrm{y=3-x+\frac{1}{2}-x-1=-2 x+\frac{5}{2}}

\mathrm{\text { Area } =\frac{1}{2}\left(\frac{3}{2} \times \frac{3}{4}\right)+\frac{3}{2} \times \frac{3}{2}+\frac{1}{2}\left(\frac{3}{2} \times \frac{3}{4}\right)} \\

\mathrm{=\frac{9}{16}+\frac{9}{4}+\frac{9}{16}} \\

\mathrm{=\frac{9}{8}+\frac{9}{4} }\\

\mathrm{=\frac{27}{8} }

Hence the correct answer is option 3.

Posted by

Sayak

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE