Get Answers to all your Questions

header-bg qa

The current flowing through a conductor connected across a source is 2 \mathrm{~A} and 1.2 \mathrm{~A} at 0^{\circ} \mathrm{C} and 100^{\circ} \mathrm{C} respectively. The current flowing through the conductor at 50^{\circ} \mathrm{C} will be ___________  \times 10^2 \mathrm{~mA}.

Option: 1

15


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

\begin{aligned} & \mathrm{i}_0 \mathrm{R}_0=\mathrm{i}_{100} \mathrm{R}_{100} \quad \text { (For same source) } \\ & \Rightarrow 2 \mathrm{R}_0=1.2 \mathrm{R}_0(1+100 \alpha) \, \, \, \, \, .....(1)\\ & \Rightarrow 1+100 \alpha=\frac{5}{3} \Rightarrow 100 \alpha=\frac{2}{3} \\ & \Rightarrow 50 \alpha=\frac{1}{3} \\ & \therefore \mathrm{i}_{50} \mathrm{R}_{50}=\mathrm{i}_0 \mathrm{R}_0 \\ & \Rightarrow \mathrm{i}_{50}=\frac{\mathrm{i}_0 \mathrm{R}_0}{\mathrm{R}_{50}}=\frac{2 \times \mathrm{R}_0}{\mathrm{R}_0(1+50 \alpha)}=\frac{2}{1+\frac{1}{3}}=1.5 \mathrm{~A} \\ & =15 \times 10^2 \mathrm{~mA} \end{aligned}

Posted by

himanshu.meshram

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE