Get Answers to all your Questions

header-bg qa

The curve \mathrm{y(x)=a x^{3}+b x^{2}+c x+5}  touches the x-axis at the point  \mathrm{P(-2,0)} and cuts the y-axis at the point \mathrm{Q} where \mathrm{y'} is equal to \mathrm{3}. Then the local maximum value of \mathrm{y(x)} is :

Option: 1

\frac{27}{4}


Option: 2

\frac{29}{4}


Option: 3

\frac{37}{4}


Option: 4

\frac{9}{2}


Answers (1)

best_answer

\mathrm{y(x)=a x^{3}+b x^{2}+c x+5} is passing through \mathrm{(-2,0)}

then \mathrm{8 a-4 b+2 c=5}            ...(1)

\mathrm{y^{\prime}(x)=3 a x^{2}+2 b x+c} touches x-axis at \mathrm{(-3,0)}

\mathrm{12 a-4 b+c=0}             ...(2)

\mathrm{again, for\; x=0, y^{\prime}(x)=3}\\

\mathrm{c=3}\\                   ...(3)

\mathrm{Solving \;eq.(1), (2) \& (3)\;\; a=\frac{-1}{2}, b=-\frac{3}{4}}\\

\mathrm{y^{\prime}(x)=-\frac{3}{2} x^{2}-\frac{3}{2} x+3}\\

\mathrm{y(x) has\; local \;maxima \;at\; x=1}

\mathrm{y(1)=\frac{27}{4}}

Hence correct option is 1

 

 

 

 

 

Posted by

Shailly goel

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE