Get Answers to all your Questions

header-bg qa

The disintegration rate of a certain radioactive sample at any instant is 4250 disintegrations per minute. 10 minutes later, the rate becomes 2250 disintegrations per minute. The approximate decay constant is : \mathrm{\text { (Take } \left.\log _{10} 1.88=0.274\right)}

Option: 1

0.02 \mathrm{~min}^{-1}


Option: 2

2.7 \mathrm{~min}^{-1}


Option: 3

0.063 \mathrm{~min}^{-1}


Option: 4

6.3 \mathrm{~min}^{-1}


Answers (1)

best_answer

\mathrm{A_0=4250}

\mathrm{A_t=2250 \text { disintegration per min}}

\mathrm{A_t=A_0 2^{-t / T_{v_2}}}

\mathrm{2250=42502^{-10 / T_{1 / 2}}}

\mathrm{\frac{9}{17}=2^{-10 / T_{1 / 2}}}

\mathrm{-\log _{10}\left(\frac{9}{17}\right)=\frac{10}{T_{1 / 2}} \log _{10} 2}

\mathrm{\because \frac{\ln (2)}{T_{1 / 2}}=\lambda}

\mathrm{\left(\log _e 10\right) \frac{\log _{10}(1.88)}{10}=\lambda}

\mathrm{\lambda=0.0274 \times 2.303}

     \mathrm{=0.063 \mathrm{~min}^{-1}}

Hence (3) is correct option.











 

Posted by

HARSH KANKARIA

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE