Get Answers to all your Questions

header-bg qa

The electric potential between a proton and an electron is given by V=V_0 \ln \left(\frac{r}{r_0}\right), where r_0  is a constant. Assuming Bohr's model to be applicable, write variation of  r_n with n, n being the principal quantum number:
 

Option: 1

\mathrm{r}_{\mathrm{n}} \propto \mathrm{n}


Option: 2

\quad r_n \propto \frac{1}{n}


Option: 3

\quad \mathrm{r}_{\mathrm{n}} \propto \mathrm{n}^2


Option: 4

\quad \mathrm{r}_{\mathrm{n}} \propto \frac{1}{\mathrm{n}^2}


Answers (1)

best_answer

Given:

 V=V_0 \ln \left(\frac{r}{r_0}\right)
\therefore \quad  Potential energy, \mathrm{U}=\mathrm{eV}

or \mathrm{U}=\mathrm{eV}_0 \ln \left(\frac{\mathrm{r}}{\mathrm{r}_0}\right) \therefore \frac{\mathrm{dU}}{\mathrm{dr}}=\mathrm{eV}_0\left(\frac{\mathrm{r}_0}{\mathrm{r}}\right) \frac{1}{\mathrm{I}_0}

Force, \mathrm{F}=-\frac{\mathrm{dU}}{\mathrm{dr}}=-\frac{\mathrm{e} \mathrm{V}_0}{\mathrm{r}} \ or\ |\mathrm{F}|=\frac{e \mathrm{~V}_0}{\mathrm{r}} 

This force provides the necessary centripetal force.


 \therefore \quad \frac{\mathrm{mv}^2}{\mathrm{r}}=\frac{\mathrm{eV}}{\mathrm{r}}

or \mathrm{v}=\sqrt{\frac{\mathrm{eV}_0}{\mathrm{~m}}}
By Bohr's postulate, \mathrm{mvr}=\frac{\mathrm{nh}}{2 \pi} 

or \quad \mathrm{v}=\frac{\mathrm{nh}}{2 \pi \mathrm{mr}}

From equations (i) and (ii), we get

 \frac{\mathrm{nh}}{2 \pi \mathrm{mr}}=\sqrt{\frac{\mathrm{eV}_0}{\mathrm{~m}}} \ or \ \mathrm{r}=\frac{\mathrm{nh}}{2 \pi \mathrm{m}} \times \sqrt{\frac{\mathrm{m}}{\mathrm{eV}_0}}

or \mathrm{r}=\left[\frac{\mathrm{h}}{2 \pi} \sqrt{\frac{1}{\mathrm{meV}_0}}\right] \times \mathbf{n}

 \therefore\quad r_n \propto n

Posted by

Devendra Khairwa

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE