Get Answers to all your Questions

header-bg qa

The equation of normal at the point \left ( 0,3 \right ) of the ellipse \mathrm{9 x^2+5 y^2=45} is 

Option: 1

\mathrm{y-3=0}


Option: 2

\mathrm{y+3=0}


Option: 3

x-axis


Option: 4

y-axis


Answers (1)

best_answer

For \mathrm{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1} ,  equation of normal at point\mathrm{\left(x_1, y_1\right) \text {, is } \frac{\left(x-x_1\right) a^2}{x_1}=\frac{\left(y-y_1\right) b^2}{y_1}}
\mathrm{\text { Here, }\left(x_1, y_1\right)=(0,3) \text { and } a^2=5, b^2=9 \text {, Therefore } \frac{(x-0)}{0} \cdot 5=\frac{(y-3)}{3} \cdot 9 \text { or } x=0 \text { i.e., } y \text {-axis. }}

Posted by

Rishi

View full answer