Get Answers to all your Questions

header-bg qa

The equation of the hyperbola in standard form whose foci are at \mathrm{(0, \pm \sqrt{10})} and which passes through \mathrm{(2,3)} is

Option: 1

\mathrm{x^2-y^2=4}


Option: 2

\mathrm{x^2-y^2=5}


Option: 3

\mathrm{x^2-y^2=1}


Option: 4

\mathrm{x^2-y^2=-5}


Answers (1)

best_answer

As the foci lie on the y-axis, the equation of hyperbola is

             \mathrm{ \frac{y^2}{b^2}-\frac{x^2}{a^2}=1 }                                               \mathrm{.....(i)}

It passes through (2,3). The condition is

              \mathrm{ \frac{9}{b^2}-\frac{4}{a^2}=1 }                                                  \mathrm{.....(ii)}

For foci, be \mathrm{=\sqrt{10} \Rightarrow b^2 e^2=10}              \mathrm{.....(iii)}

Also \mathrm{a^2=b^2\left(e^2-1\right)}

Or \mathrm{a^2=10-b^2}                                             \mathrm{.....(iv)}

From (ii) and (iv),

           \mathrm{ \frac{9}{b^2}=1+\frac{4}{a^2}=1+\frac{4}{10-b^2} }

\mathrm{ \begin{array}{ll} \text { Or } & 90-9 b^2=14 b^2-b^4 \\\\ \text { Or } & b^4-23 b^2+90=0 \\\\ \text { Or } & \left(b^2-18\right)\left(b^2-5\right)=0 \\\\ \therefore & b^2=5,18 \end{array} }
\mathrm{\text { On using (iv) and } b^2=18 \text { gives } a^2=10-18=-8 \text {, which is not possible. }}

\mathrm{\therefore \quad b^2=5 \text { and then } a^2=10-5=5}

Hence, the hyperbola is \mathrm{x^2-y^2=5.}

The answer is (b)

Posted by

jitender.kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE