Get Answers to all your Questions

header-bg qa

The following functions are differentiable on (-1,2).

Option: 1

\mathrm{\int_x^{2 x}(\log t)^2 d t}


Option: 2

\mathrm{\int_0^{2 x} \frac{\sin t}{t} d t}


Option: 3

\mathrm{\int_0^x \frac{1-t+t^2}{1+t+t^2} d t}


Option: 4

none of these.


Answers (1)

best_answer

Since the functions  \mathrm{(\log t)^2} and   \mathrm{(\frac{\sin t}{t})}   are not defined on (-1,2), therefore the functions in (a) and (b) are not defined on (-1,2). The function \mathrm{ g(t)=\frac{1-t+t^2}{1+t+t^2}}  is continuous on (-1,2) and  \mathrm{ f(x)=\int_0^x \frac{1-t+t^2}{1+t+t^2} d t}  is the integral function of g(t). \mathrm{therefore~ f(x)} is differentiable on (-1,2) such that\mathrm{ f^{\prime}(x)=g(x)}.

Posted by

Irshad Anwar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE