Get Answers to all your Questions

header-bg qa

The general solution of  sin^2\theta sec\theta +\sqrt 3tan \theta =0

Option: 1

\theta = n\pi + {( - 1)^{n + 1}}\frac{\pi }{3},\;\theta = n\pi \;;\;n \in I


Option: 2

\theta = n\pi \;;\;n \in I


Option: 3

\theta = \frac{{n\pi }}{2},\;n \in I


Option: 4

\theta = n\pi + {( - 1)^{n + 1}}\frac{\pi }{3},\;n \in I


Answers (1)

best_answer

As we learnt

 

General Solution -

 

Solution consisting of all possible solutions of a trigonometric equation.

- wherein

e.g. \sin \Theta = 0\Rightarrow \Theta = n\pi

 

 

sin^2\theta sec\theta +\sqrt 3tan \theta =0 \Rightarrow(sin^2\theta +\sqrt3sin\theta)sec \theta=0    

                           \Rightarrow sin\theta(sin\theta +\sqrt3)sec \theta=0

                           \Rightarrow \theta=n\pi,n\epsilon I                   (\because \: sin \theta \neq -\sqrt3, \:sec\theta \neq0)

Posted by

HARSH KANKARIA

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Similar Questions