Get Answers to all your Questions

header-bg qa

The intersection of three lines x-y=0,x+2y=3 \; \text {and} \; 2x+y=6 is a :
 
Option: 1 None of the above
Option: 2 Equilateral triangle
Option: 3 Isosceles triangle  
Option: 4 Right angled triangle

Answers (1)

best_answer

\\\text{Let}\\ \mathrm{L}_{1}: \mathrm{x}-\mathrm{y}=0 \\ \mathrm{L}_{2}: \mathrm{x}+2 \mathrm{y}=3 \\\mathrm{L}_{3}: \mathrm{2x}+ \mathrm{y}=6

Let point A be the point of intersection of L1 and L2, point B be the point of intersection of L1 and L3, and point C be the point of intersection of L3 and L2.

A = (1, 1)

B = (2, 2)

C = (3, 0)

\\\mathrm{AC}=\sqrt{(1-3)^2+(1-0)^2}=\sqrt{4+1}=\sqrt{5} \\ \mathrm{BC}=\sqrt{(2-3)^2+(2-0)^2}=\sqrt{1+4}=\sqrt{5} \\ \mathrm{AB}=\sqrt{(1-2)^2+(1-2)^2}=\sqrt{1+1}=\sqrt{2}

so its an isosceles triangle

Posted by

himanshu.meshram

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE