Get Answers to all your Questions

header-bg qa

The length of the minor axis (along y-axis) of an ellipse in the standard form is \frac{4}{\sqrt{3}}. If this ellipse touches the line, x+6y=8; then its eccentricity is : 
Option: 1 \frac{1}{2}\sqrt{\frac{5}{3}}
 
Option: 2 \frac{1}{2}\sqrt{\frac{11}{3}}
 
Option: 3 \sqrt{\frac{5}{6}}
 
Option: 4 \frac{1}{3}\sqrt{\frac{11}{3}}
 
 

Answers (1)

best_answer

 

 

What is Ellipse? -

Ellipse

Standard Equation of Ellipse:

The standard form of the equation of an ellipse with center (0, 0) and major axis on the x-axis is

\mathbf{\frac{\mathbf{x}^{2}}{\mathbf{a}^{2}}+\frac{\mathbf{y}^{2}}{\mathbf{b}^{2}}=1} \quad \text { where }, \mathrm{b}^{2}=\mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)_{(\mathrm{a}>\mathrm{b})}

 

  1. a > b 

  2.  the length of the major axis is 2a 

  3.  the coordinates of the vertices are (±a, 0) 

  4.  the length of the minor axis is 2b 

  5.  the coordinates of the co-vertices are (0, ±b)

-

 

 

Equation of Tangent of Ellipse in Parametric Form and Slope Form -

 

Slope Form:

\\ {\text { The equation of tangent of slope m to the ellipse, } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \text { are }} \\ {y=m x \pm \sqrt{a^{2} m^{2}+b^{2}} \text { and coordinate of point of contact is }} \\ {\left(\mp \frac{a^{2} m}{\sqrt{a^{2} m^{2}+b^{2}}}, \pm \frac{b^{2}}{\sqrt{a^{2} m^{2}+b^{2}}}\right)}

-

 

 

 

\\\begin{array}{l}{2 \mathrm{b}=\frac{4}{\sqrt{3}} \quad \Rightarrow \quad \mathrm{b}=\frac{2}{\sqrt{3}}} \\ {\text { Equation of tangent } \equiv \mathrm{y}=\mathrm{mx} \pm \sqrt{\mathrm{a}^{2} \mathrm{m}^{2}+\mathrm{b}^{2}}}\end{array}\\\text { comparing with } \equiv y=\frac{-x}{6}+\frac{4}{3}\\

\\ {\mathrm{m}=\frac{-1}{6} \text { and } \mathrm{a}^{2} \mathrm{m}^{2}+\mathrm{b}^{2}=\frac{16}{9}} \\ {\Rightarrow \quad \frac{\mathrm{a}^{2}}{36}+\frac{4}{3}=\frac{16}{9}} \\ {\Rightarrow \quad \frac{\mathrm{a}^{2}}{36}=\frac{16}{9}-\frac{4}{3}=\frac{4}{9}} \\ {\Rightarrow \quad a^{2}=16} \\ {\mathrm{e}=\sqrt{1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}}\\e=\sqrt{\frac{11}{12}}

Correct Option (2)

Posted by

avinash.dongre

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE