Get Answers to all your Questions

header-bg qa

The line 4 x-7 y+10=0  intersects the parabola y^2=4 a x ,  at the points A & B . The co-ordinates of the point of intersection of the tangents drawn at the points A & B are :

 

Option: 1

(53,83)


Option: 2

(23,76)


Option: 3

(63,82)


Option: 4

(48,26)


Answers (1)

best_answer

Line  4 x-7 y+10=0  intersects the parabola y^2=4 a x

\begin{aligned} & \Rightarrow y^2=7 y-10 \\ & \text { or } y^2-7 y+10=0 \\ & \Rightarrow(y-5)(y-2)=0 \\ & \therefore y=5,2 \end{aligned}

Put \: \: y=5 \: \: in\: \: y^2=4 x\: \: we \: \: get\\

4 x=25 \text { Or } x=\frac{25}{4}

Again put y=2 \: \: in\: \: y^2=4 x \: \: we \: \: get\: \: 4 x=4

or \: \: x=1\\ \therefore \mathrm{A}(1,2) \: \: and\: \: \mathrm{B}\left(\frac{25}{4}, 5\right)

Tangent of  y^2=4 x\: \: is\: \: T=0 \: \: is \: \: y y_1=2\left(x+x_1\right)

At \: \: A (1,2) \: \: we \: \: have \: \: 2 y=2(x+1)\\

or \: \: y=x+1 \: \: or\: \: x-y+1=0  is the equation of the tangent at the point A

At \: \: B \left(\frac{25}{4}, 5\right) we\: \: have \: \: 5 y=2\left(x+\frac{25}{4}\right)

or \: \: 20 y=8 x+50 \: \: or \: \: \: 4 x-10 y-25=0  is the equation of the tangent at the point B

\begin{aligned} & \Rightarrow 10 x+10=4 x+25 \\ & \Rightarrow 10 x-4 x=25-10 \end{aligned}

\Rightarrow 6 x=15\\

or\: \: x=53

Substituting x=53 \: \: in\: \: x-y+1=0 we get 

\begin{aligned} & 53-y+1=0 \\ & \Rightarrow-y+83=0 \\ & \therefore y=83 \end{aligned}

∴ tangent intersect at the point (53,83)

 

 

Posted by

Rakesh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE