Get Answers to all your Questions

header-bg qa

The locus of centres of a family of circles passing through the vertex of the parabola \mathrm{y}^2=4 \mathrm{ax} and cutting the parabola orthogonally at the other point of intersection is \mathrm{2 y^2\left(2 y^2+x^2-12 a x\right)=a x(3 x-4 a)^2 k^2}, where k =

 

Option: 1

\pm 2


Option: 2

\pm \frac{1}{2}


Option: 3

\pm 1


Option: 4

\pm \sqrt{3}


Answers (1)

best_answer

Let \mathrm{P\left(a t^2, 2 a t\right) be\, any\, point \, on\, y^2=4 a x. }\mathrm{P\left(a t^2, 2 a t\right) be\, any\, point \, on \, y^2=4 a x. } Then vertex is A(0,0). The equation of tangent at P is
\mathrm{\text { ty }=x+a t^2 }...........................(1)
Tangent at  \mathrm{ \mathrm{P} } will be normal to the circle, AP is a chord whose mid point is \mathrm{ \left(\frac{\mathrm{at}^2}{2}\right., at ) } and slope is \mathrm{ \frac{2}{\mathrm{t}} }
\mathrm{ \therefore \quad } Equation of the line passing through mid-point of AP and perpendicular to \mathrm{ \mathrm{AP}} is
\mathrm{ \begin{aligned} & y-a t=-\frac{t}{2}\left(x-\frac{a t^2}{2}\right) \\ & t x+2 y=\frac{a t^3}{2}+2 a t \end{aligned} }........................(2)
(1) and (2) both pass through \mathrm{\left(\mathrm{x}_1, \mathrm{y}_1\right) } which is the centre of the circle
\mathrm{\begin{aligned} & \mathrm{ty}_1=\mathrm{x}_1+\mathrm{at}^2.........(3) \\ & 2 \mathrm{tx}_1+4 \mathrm{y}_1=a t^3+4 \mathrm{at} \end{aligned}......(4) }
Multiplying (3) by t and subtracting (4) we have
\mathrm{t^2 y_1+t\left(4 a-3 x_1\right)-4 y_1=0 }
Also from (3), \mathrm{\mathrm{at}^2-\mathrm{ty}_1+\mathrm{x}_1=0......(5) }
\mathrm{Eliminating { }^t from(5) \& (6) }
\mathrm{\frac{t^2}{x_1\left(4 a-3 x_1\right)-4 y_1^2}=\frac{t}{-4 a y_1-x_1 y_1}=\frac{1}{-y_1^2-a\left(4 a-3 x_1\right)} }
On simplifying we get
\mathrm{2 \mathrm{y}_1^2\left(2 \mathrm{y}_1^2+\mathrm{x}_1^2-12 \mathrm{ax}_1\right)=\mathrm{ax}_1\left(3 \mathrm{x}_1-4 \mathrm{a}\right)^2}
Hence required locus is
\mathrm{2 y^2\left(2 y^2+x^2-12 a x\right)=a x(3 x-4 a)^2 k^2 .}
 

Posted by

Gautam harsolia

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE