Get Answers to all your Questions

header-bg qa

The locus of the middle points of the chords of contact of tangents to the hyperbola \mathrm{x^2-y^2=a^2} drawn from points on its auxiliary circle is \mathrm{a^2\left(x^2+y^2\right)=k\left(x^2-y^2\right)^2}, where \mathrm{k=}

Option: 1

1


Option: 2

2


Option: 3

4


Option: 4

\frac{1}{2}


Answers (1)

best_answer

A point on the auxiliary circle \mathrm{x^2+y^2=a} is \mathrm{P(a \cos \theta, a \sin \theta).}

The equation of the chord of contact of tangents drawn from P to the given hyperbola is

\mathrm{ x \cos \theta-y \sin \theta=a }               ........(1)

If  \mathrm{M(h, k)} is its middle point, then this equation can be written as \mathrm{ T=S_1}

Or \mathrm{h x-k y-a^2=h^2-k^2-a^2}    ........(2)

On comparing (1) and (2), we obtain

\mathrm{ \begin{aligned} \frac{\cos \theta}{h} & =\frac{-\sin \theta}{-k}=\frac{a}{h^2-k^2} \\\\ \Rightarrow \quad \cos \theta & =\frac{a h}{h^2-k^2}, \sin \theta=\frac{a k}{h^2-k^2} \end{aligned} }

On eliminating \mathrm{\theta, } we obtain

\mathrm{ \frac{a^2 h^2}{\left(h^2-k^2\right)^2}+\frac{a^2 k^2}{\left(h^2-k^2\right)^2}=1 \Rightarrow\left(h^2+k^2\right) a^2=\left(h^2-k^2\right)^2 }
The locus of \mathrm{M(h, k)} is  \mathrm{\left(x^2+y^2\right) a^2=\left(x^2-y^2\right)^2. }

\mathrm{ \Rightarrow \quad k=1 }

The answer is (a)

Posted by

Sayak

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE