Get Answers to all your Questions

header-bg qa

The magnetic moment of an electron (e) revolving in an orbit around nucleus with an orbital angular momentum is given by :
 

Option: 1

\mathrm{\vec{\mu}_{\mathrm{L}=\frac{\overrightarrow{\mathrm{eL}}}{2 \mathrm{~m}}}}
 


Option: 2

\mathrm{\vec{\mu}_{\mathrm{L}}=-\frac{\overrightarrow{e \mathrm{~L}}}{2 \mathrm{~m}}}
 


Option: 3

\mathrm{\overrightarrow{\mu_{l}}=-\frac{\overrightarrow{\mathrm{eL}}}{\mathrm{m}}}
 


Option: 4

\mathrm{\vec{\mu}_{l}=\frac{2 \overrightarrow{\mathrm{eL}}}{\mathrm{m}} }


Answers (1)

best_answer

We know that,

\mathrm{\overline{\mu}_{L}=(Gyromagnetic \: \: ratio)\overline{L}}

\mathrm{\overline{\mu}_{L}=\left ( \frac{q}{2m} \right )\overline{L}}

For electron,

\mathrm{q=-e}

\therefore \mathrm{\overline{\mu }_{L}=\left ( \frac{-e}{2m} \right )\overline{L}}

Hence (2) is correct option.



 

Posted by

manish

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE