Get Answers to all your Questions

header-bg qa

The mean and variance of a binomial distribution are \alpha and \frac{\alpha}{3} respectively. If \mathrm{P(X=1)=\frac{4}{243}}, then \mathrm{P(X=4 \text { or } 5)} is equal to:

Option: 1

\frac{5}{9}


Option: 2

\frac{64}{81}


Option: 3

\frac{16}{27}


Option: 4

\frac{145}{243}


Answers (1)

best_answer

\mathrm{ \Rightarrow n p=\alpha }\\        .........(1)

\mathrm{n p q=\frac{\alpha}{3} }\\           .........(2)

\mathrm{\text { from (1) \& (2) }}\\

\mathrm{q=\frac{1}{3} \quad \&\; p=\frac{2}{3}}\\

\mathrm{{ }^{n} C_{1} q^{n-1} \cdot p^{1}=\frac{4}{243}}\\

\mathrm{\frac{n}{3^{n}}=\frac{2}{243}}\\

\mathrm{n=6}\\

\mathrm{P(4 \text { or } 5)={ }^{6} C_{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{2}+{ }^{6} C_{5}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)^{0}}\\

                   =\frac{16}{27}

Hence correct option is 3

Posted by

SANGALDEEP SINGH

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE