Get Answers to all your Questions

header-bg qa

The minimum distance between the parabolas y ^{2} - 4x - 8y + 40 = 0\: and \:x ^{2}- 8x - 4y + 40 = 0 is

Option: 1

0
 


Option: 2

\sqrt{3}


Option: 3

2\sqrt{2}

 


Option: 4

\sqrt{2}


Answers (1)

best_answer

Answer (4)

\\y^{2}-4x-8y+40=0\; \; \; \; ...(i)\\and\; x^{2}-4y-8x+40=0\; \; \; \; \; \; \; ...(ii)

are mirror image about line y=x

So, let equation of tangent parallel to y=x on equation (i) and (ii) is

\\y=x+\lambda _{1}\; \; \; \; \; \; \; \; \; \; \; ...(iii)\\and \; y=x+\lambda _{2}\; \; \; \; \; \; \; ...(iv)respectively

Now from (i) and (ii),

\left ( x+\lambda _{1} \right )^{2}-4\left ( x \right )-8\left (x+\lambda _{1} \right )+40=0

\\\Rightarrow x^{2}+x\left ( -12+2\lambda _{1} \right )+\lambda {_{1}}^{2}-8\lambda _{1}+40=0\\D=0

\left [ 2\left ( \lambda _{1}-6 \right ) \right ]^{2}-4\left [ \lambda {_{1}}^{2}-8\lambda _{1}+40 \right ]=0

\Rightarrow \lambda {_{1}}^{2}+36-12\lambda _{1}-\lambda {_{1}}^{2}+8\lambda _{1}-40=0

\Rightarrow -4\lambda _{1}-4=0

             \lambda _{1}=-1

Similarly \lambda _{2}=1

Now perpendicular distance between

y=x+1\; and\; y=x-1

= \sqrt{2}\; unit

Posted by

Divya Prakash Singh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE