Get Answers to all your Questions

header-bg qa

The normal \mathrm{y=m x-2 a m-a m^3} to the parabola \mathrm{y^2=4 a x } subtends a right angle at the vertex if

Option: 1

\mathrm{m=1}


Option: 2

\mathrm{m=\sqrt{2}}


Option: 3

\mathrm{m=-\sqrt{2}}

 


Option: 4

\mathrm{m=1/\sqrt{2}}


Answers (1)

best_answer

Making \mathrm{y^2=4 a x} homogeneous with the help of \mathrm{y=m x-2 a m-a m^3}

or                               \mathrm{\frac{m x-y}{2 a m+a m^3}=1}

Then                         \mathrm{y^2=4 a x\left(\frac{m x-y}{2 a m+a m^3}\right)}

\Rightarrow                            \mathrm{y^2=\frac{4 x(m x-y)}{2 m+m^3}}

\mathrm{\Rightarrow\left(2 m+m^3\right) y^2-4 m x^2+4 x y=0\: \: \: \: \: \: ...(i)}

\therefore  Angle between the lines represented by Eq. (i) is \mathrm{\pi/2}

\therefore Coefficient of \mathrm{x^2+} coefficient of \mathrm{y^2=0}

\Rightarrow                            \mathrm{2 m+m^3-4 m=0}

\Rightarrow\: \: \therefore                      \mathrm{\begin{aligned} m^3-2 m & =0 \\ m^2 & =2, m \neq 0 \end{aligned}}

\therefore                                           \mathrm{m= \pm \sqrt{2}}

Posted by

rishi.raj

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE