Get Answers to all your Questions

header-bg qa

The number of all 3\times 3 matrices A, with enteries from the set \left \{ -1,0,1 \right \} such that the sum of the diagonal elements of AA^{T} is 3, is
Option: 1 672
Option: 2 512
Option: 31024
Option: 4 256
 

Answers (1)

best_answer

Let matrix A be

\\A=\begin{bmatrix} a &b &c \\ d& e &f \\ g &h & i \end{bmatrix}\\\\\\ A^T=\begin{bmatrix} a &d &g \\ b& e &h \\ c &f & i \end{bmatrix} \\\\\\ \text{trace}(AA^T)=a^2+b^2+c^2+d^2+e^2+f^2+g^2+h^2+i^2=3

So out of 9 elements, 3 elements must be equal to 1 or −1, and the rest elements must be 0.

Possible cases

\begin{array}{cc} 0,0,0,0,0,0,1,1,1 & \rightarrow \text{Total possibilities}=^9C_6 \\ 0,0,0,0,0,0,-1,-1,-1 & \rightarrow \text{Total possibilities}=^9C_6 \\ 0,0,0,0,0,0,1,1,-1 & \rightarrow \text{Total possibilities}=^9C_6\times 3 \\ 0,0,0,0,0,0,-1,1,-1 & \rightarrow \text{Total possibilities}=^9C_6\times3 \end{array}

\\\\\text{Total number of cases}=^{9}{C}_{6}\times 8=672

Posted by

Kuldeep Maurya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE