Get Answers to all your Questions

header-bg qa

The number of the integral solution of \left | 5x+7 \right |+\left |2x-14 \right |=21 is

Option: 1

2


Option: 2

3


Option: 3

1


Option: 4

0


Answers (1)

best_answer

\left | 5x+7 \right |+\left |2x-14 \right |=21

 

Case 1:

5x+7\geq 0 and 2x-14 \geq 0

i.e. x\geq 7

Both mod signs open with the positive sign

(5x+7 )+(2x-14) =21

7x-7 =21

x=4

but x\geq7 
Hence no answer in this interval

 

Case 2:

5x+7\leq 0 and 2x-14 \leq 0

i.e. x\leq -\frac{7}{5}

Both mod signs open with a negative sign

-(5x+7 )-(2x-14) =21

-7x+7 =21

x=-2 and x\leq -\frac{7}{5}
Hence x=-2 is one solution

 

Case 3:

5x+7\leq 0 and 2x-14 \geq 0

i.e. x\leq -\frac{7}{5} and x \geq 7

Not possible

 

Case 4:

5x+7\geq 0 and 2x-14 \leq 0

i.e. x\geq -\frac{7}{5} and x \leq 7

5x+7 open with the positive sign and 2x-14 with the negative sign

(5x+7 )-(2x-14) =21

3x+21 =21

x=0 and -\frac{7}{5}\leq x \leq7
Hence x=0 is another solution

Total number of integral solution is 2

Posted by

Ajit Kumar Dubey

View full answer