Get Answers to all your Questions

header-bg qa

The probability that a randomly chosen 2 \times 2 matrix with all the entries from the set of first 10 primes, is singular, is equal to :

Option: 1

\frac{133}{10^{4}}


Option: 2

\frac{18}{10^{3}}


Option: 3

\frac{19}{10^{3}}


Option: 4

\frac{271}{10^{4}}


Answers (1)

best_answer

Let the matrix \mathrm{A} be  \mathrm{\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]}

If \mathrm{A} is singular then \mathrm{|A|=0}

\mathrm{\Rightarrow a d-b c=0} \\

\mathrm{\Rightarrow a d=b c}

Case I : \mathrm{a= d}

\mathrm{a} can take \mathrm{10} values.

\mathrm{d} can take \mathrm{1} value which equals \mathrm{a}

Now for \mathrm{\text { ad }=b c} to hold

\mathrm{b c=a^{2} \Rightarrow b=a, c=a( as\: a\: is\: prime)}

\therefore only one option for \mathrm{b\: and\: c}

Total such matrices  \mathrm{=10\times1\times1\times1=10}

 

Case II : \mathrm{a\neq d}

In this case \mathrm{a} can take \mathrm{10} values and \mathrm{d} can take \mathrm{9} values.

Now for  \mathrm{a d=b c, \quad(b=a \text { and } c=d)}

\mathrm{ \text { or } \quad(b=d \text { and } c=a) }\\

\mathrm{\therefore \quad 10 \times 9 \times 2=180} \\

 

\mathrm{\text {favourable }=10+180=190}

\mathrm{Total\: matrices =10^{4}}

\mathrm{Probability =\frac{190}{10^{4}}=\frac{19}{10^{3}}}

Hence answer is option 3.

Posted by

SANGALDEEP SINGH

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE