Get Answers to all your Questions

header-bg qa

The radius of the second Bohr orbit, in terms of the Bohr radius, a_{0}, in Li^{2+} is : 
Option: 1 \frac{2a_{0}}{3}

Option: 2 \frac{4a_{0}}{3}

Option: 3 \frac{4a_{0}}{9}

Option: 4 \frac{2a_{0}}{9}
 

Answers (1)

best_answer

As we have learnt,

 

Radius, velocity and the energy of nth Bohr orbital -

 

Bohr radius of nth orbit:

r_{n}= 0.529 \frac{n^{2}}{z}A^{0}

where Z is the atomic number

Velocity of electron in nth orbit:

v_{n}= (2.165\times 10^{6})\frac{z}{n}\: m/s

where z is atomic number

Total energy of electron in nth orbit:

E_{n}= -13.6\: \frac{z^{2}}{n^{2}}eV

Where z is atomic number

-

 

r=\frac{n^2a_o}{Z}.

\mathrm{For\ Li^{2+}\ r=\frac{2^2a_o}{3}=\frac{4a_o}{3}}

Therefore, Option(2) is correct.

Posted by

vishal kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE