Get Answers to all your Questions

header-bg qa

The shortest wavelength of H atom in the Lyman series is \lambda_{1}. The longest wavelength in the Balmer series He+ is:
Option: 1 \frac{36 \lambda _{1}}{5}
Option: 2 \frac{5\lambda _{1}}{9}
Option: 3 \frac{9 \lambda _{1}}{5}
Option: 4 \frac{27 \lambda _{1}}{5}

Answers (1)

best_answer

We know,

\Delta \mathrm{E}=\frac{\mathrm{hc}}{\lambda}

So,\lambda=\frac{h c}{\Delta E} for  \lambda minimum(Shortest)

\mathrm{\Delta \mathrm{E}= maximum}

for f H atoms in the Lyman series n = 1 & for \mathrm{\Delta \mathrm{E}_{maximum}}Transition must be form n = \infty to n = 1,

Z = 1 

\text { So } \frac{1}{\lambda}=R_{H} Z^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)

\frac{1}{\lambda_1}=\mathrm{R}_{\mathrm{H}} \mathrm{(1)}^{2}(1-0)

\frac{1}{\lambda_1}=\mathrm{R_H} \times(1)^{2} \Rightarrow \lambda_{1}=\frac{1}{\mathrm{R_H}}

For longest wavelength \mathrm{\Delta \mathrm{E}_{minimum}} for Balmer series n = 3 to n = 2 will have \mathrm{\Delta \mathrm{E}_{minimum}} for He+ , Z = 2

\text { So } \frac{1}{\lambda_{2}}=R_{H} \times Z^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)

\frac{1}{\lambda_{2}}=\mathrm{R}_{\mathrm{H}} \times (2)^2\left(\frac{1}{4}-\frac{1}{9}\right)

\frac{1}{\lambda_{2}}=\mathrm{R}_{\mathrm{H}} \times \frac{5}{9}

\lambda_{2}=\frac{1}{R_H} \times \frac{9}{5}

\lambda_{2}=\lambda_{1} \times \frac{9}{5}

Therefore, the correct option is (3).

Posted by

Kuldeep Maurya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE