Get Answers to all your Questions

header-bg qa

The sum of the eccentric angles of the conormal points on the ellipse \mathrm{ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1} is equal to

 

Option: 1

\mathrm{2 n \pi, n \in N}
 


Option: 2

\mathrm{(2 n+1) \pi, n \in N}
 


Option: 3

\mathrm{n \pi, n \in N}
 


Option: 4

\frac{n}{2} \pi, n \in N


Answers (1)

best_answer

As obtained in the last solved example (8), the normal at \mathrm{P(a \cos \theta, b \sin \theta)} passes through \mathrm{M\left(x_1, y_1\right)}. The condition is

\mathrm{ b y_1 t^4+2 t^3\left(a x_1+a^2 e^2\right)+2 t\left(a x_1-a^2 e^2\right)-b y_1=0 }

The roots are \mathrm{ t_1, t_2, t_3, t_4 }

\mathrm{ \sum t_1 =-\frac{2\left(a x_1+a^2 e^2\right)}{b y_1} }

\mathrm{ \sum t_1 t_2 =0 }         ........(1)

\mathrm{ \sum t_1 t_2 t_3 =-\frac{2\left(a x_1-a^2 e^2\right)}{b y_1} }

\mathrm{ t_1 t_2 t_3 t_4 =-1 }      ...........(2)

Let \mathrm{ t_r=\tan \frac{\theta_r}{2}(r=1,2,3, r) }

\mathrm{ \therefore \quad \tan \left(\frac{\theta_1}{2}+\frac{\theta_2}{2}+\frac{\theta_3}{2}+\frac{\theta_4}{2}\right) }

\mathrm{ =\frac{\sum \tan \frac{\theta_1}{2}-\sum \tan \frac{\theta_1}{2} \tan \frac{\theta_2}{2} \tan \frac{\theta_3}{2}}{1-\sum \tan \frac{\theta_1}{2} \tan \frac{\theta_2}{2}+\tan \frac{\theta_1}{2} \tan \frac{\theta_2}{2} \tan \frac{\theta_3}{2} \tan \frac{\theta_4}{2}} }

\mathrm{ =\frac{\sum t_1-\sum t_1 t_2 t_3}{1-\sum t_1 t_2+t_1 t_2 t_3 t_4} }

\mathrm{ =\frac{\sum t_1-\sum t_1 t_2 t_3}{1-0+(-1)}=\infty \text { from eqs. (1) and (2) } }

\mathrm{ \Rightarrow \quad \frac{\theta_1+\theta_2+\theta_3+\theta_4}{2}=\frac{\pi}{2}+n \pi }

\mathrm{ \text { Or } \quad \theta_1+\theta_2+\theta_3+\theta_4 =2 n \pi+\pi }

                                            \mathrm{ =(2 n+1) \pi, n \in N }

This is a standard property about the eccentric angles for normals of an ellipse.

Hence option 2 is correct.





 

Posted by

Pankaj

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE