Get Answers to all your Questions

header-bg qa

The sum of the series

\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-........upto\: \infty

is equal to

Option: 1

\log_{e}2-1


Option: 2

\log_{e}2


Option: 3

\log_{e}\left ( 4/e \right )


Option: 4

2\log_{e}2


Answers (1)

best_answer

Using @6 and @7 

\frac{1}{1.2}- \frac{1}{2.3}+ \frac{1}{3.4}\cdot \cdot \cdot \infty

\therefore \frac{1}{1.2}= \frac{1}{1}-\frac{1}{2}

\frac{1}{2.3}= \frac{1}{2}-\frac{1}{3}

So that \left ( 1-\frac{1}{2} \right )-\left ( \frac{1}{2} -\frac{1}{3}\right )+\left ( \frac{1}{3} -\frac{1}{4}\right )-\left ( \frac{1}{4}-\frac{1}{5} \right )\cdot \cdot \cdot \infty

= 1-\frac{2}{2}+\frac{2}{3}-\frac{2}{4}+\frac{2}{5}\cdot \cdot \cdot \infty

= 1+2\left [ -\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\cdot \cdot \cdot \right ]

= 1+2\left [ log2-1 \right ]                                            \left [ \because log\left ( 1-x \right )= x-\frac{x^{2}}{2}+\frac{x^{3}}{3}\cdot \cdot \cdot \right ]

= 1=2log2-2                                               Put x = 1

= log{_{e}}^{4}-1                                                          log2= 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\cdot \cdot \cdot

log{_{e}}^{4}-log{_{e}}^{e}                                                    log2-1= -\frac{1}{2}+\frac{1}{3}\cdot \cdot \cdot \cdot

= log_{e}^{\frac{4}{e}}

 

Posted by

Suraj Bhandari

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE