Get Answers to all your Questions

header-bg qa

The tangent to the graph of the function y = f(x) at the point with abscissa x =1 form an angle of \pi/6 and at the point x =2, an angle of \pi/3 and at the point x =3, an angle of  \pi/4.The value of \int_{1}^{3}{f}'(x){f}''(x)dx+\int_{2}^{3}{f}''(x)dx({f}''(x) is supposed to be continuous) is :

Option: 1

\frac{4\sqrt{3}-1}{3\sqrt{3}}
 


Option: 2

\frac{3\sqrt{3}-1}{2}

 


Option: 3

\frac{4-\sqrt{3}}{3}


Option: 4

none of these


Answers (1)

best_answer

 

lower and upper limit -

\int_{a}^{b}f\left ( x \right )dx= \left ( F\left ( x \right ) \right )_{a}^{b}

                = F\left ( b \right )-F\left ( a \right )

 

- wherein

Where a is lower and b is upper limit.

 

Integration By PARTS -

Let u and v are two functions then 

\int u\cdot vdx=u\int vdx-\int \left ( \frac{du}{dx}\int vdx \right )dx

- wherein

Where u is the Ist function v is he IInd function

 

 

Given ,

f'(1)=\left ( \frac{dy}{dx} \right )_{x=1}=\tan\frac{\pi}{6}=\frac{1}{\sqrt{3}}

f'(2)=\left ( \frac{dy}{dx} \right )_{x=2}=\tan\frac{\pi}{3}=\sqrt{3}

f'(3)=\left ( \frac{dy}{dx} \right )_{x=3}=\tan\frac{\pi}{4}=1

Let , I=\int_{1}^{3}f'(x).f''(x)dx+\int_{2}^{3}f''(x)dx=I_{1}+I_{2}

\therefore I_{1}=\int_{1}^{3}f'(x).f''(x)dx

I_{1}=f'(x).f'(x) | \right |_{1}^{3}- \int_{1}^{3}f''(x)f'(x)dx

2I_{1}=\left \{ f'(3) \right \}^{2}-\left \{ f'(1) \right \}^{2}

2I_{1}=1-\frac{1}{3}

I_{1}=\frac{1}{3}

I_{2}=\int_{2}^{3}f''(x)dx=f'(x) | \right |^{3}_{2}=f'(3)-f'(2)

=1-\sqrt{3}

\therefore I=I_{1}+I_{2}=\frac{1}{3}+1-\sqrt{3}=\frac{4}{3}-\sqrt{3}

Posted by

Deependra Verma

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE