Get Answers to all your Questions

header-bg qa

The total number of positive integral solutions \mathrm{(a, b, c)} such that \mathrm{a b c=48} is 

Option: 1

45


Option: 2

30


Option: 3

65


Option: 4

90


Answers (1)

best_answer

It is given that \mathrm{a b c=48}
Then it can also be written in the form \mathrm{a . b \cdot c=2^{4} \cdot 3^{1}}

Then a,b,c can be written in the form

\mathrm{a=2^{a_{1}} \cdot 3^{b_{1}} }
\mathrm{b=2^{a_{2}} \cdot 3^{b_{2}} }
\mathrm{c=2^{a_{3}} \cdot 3^{b_{3}} }

\mathrm{\left(a_{1}, a_{2}, a_{3}\right) \varepsilon(0,1) } and \mathrm{\left(b_{1}, b_{2}, b_{3}\right) \varepsilon(0,1) }
Also \mathrm{a_{1}+a_{2}+a_{3}=4 }

Then the number of solutions will be \mathrm{={ }^{4+3-1} C_{3-1} }
                                                           \mathrm{=^{6} C_{2}}
                                                           \mathrm{=15}

and \mathrm{b_{1}+b_{2}+b_{3}=1}

Then the number of solutions will be given as \mathrm{={ }^{(1+3-1)} C_{(3-1)}}
                                                                          \mathrm{={ }^{3} C_{2}}
                                                                          \mathrm{=3}

The total number of solutions will be \mathrm{=15 \times 3}
                                                          \mathrm{=45}

The correct option is (a).

Posted by

Rishi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE