Get Answers to all your Questions

header-bg qa

Three identical spheres each of mass \mathrm{ M} are placed at the corners of a right angled triangle with mutually perpendicular sides equal to 3 \mathrm{~m} each. Taking point of intersection of mutually perpendicular sides as origin, the magnitude of position vector of centre of mass of the system will be \mathrm{\sqrt{x} \mathrm{~m}}. The value of \mathrm{x} is_____________.

Option: 1

2


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

\mathrm{x_{c m} =\frac{m_1 x_1+m_2 x_2+m_3 x_3}{m_1+m_2+m_3} }

\mathrm{=\frac{M(0)+M(3)+M(0)}{3 M} }

\mathrm{x_{c m} =1 }

\mathrm{Y_{c m} =\frac{m_1 y_1+m_2 y_2+m_3 y_3}{m_1+m_2+m_3} }

\mathrm{=\frac{M(0)+M(0)+M(3)}{3 M}}

\mathrm{Y _{\text {cm }}=1}

Co-ordination of centre of mass =\mathrm{\left ( x_{cm},y_{cm} \right )=\left ( 1,1 \right )}

\mathrm{r=\sqrt{1^2+1^2}=\sqrt{2}}

The value of \mathrm{x=2}

Posted by

Pankaj

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE