Get Answers to all your Questions

header-bg qa

Three rotten apples were accidentally mixed with seven good apples, and the four were pulled out one by one without replacement. Let X be a random variable the number of bad apples.If  \mu and \sigma^2 denote the mean and variance of X respectively then 10\left(\mu^2+\sigma^2\right) then equal to:

X_i p_i p_ix_i p_i\left(x_i\right)
0 \frac{_{}^{7}\textrm{C}_{4}}{_{}^{10}\textrm{C}_{4}}=\frac{35}{100} 0 0
1 \frac{_{}^{3}\textrm{C}_{1}\times _{}^{7}\textrm{C}_{3}}{_{}^{10}\textrm{C}_{4}}=\frac{105}{210} \frac{105}{210} \frac{105}{210}
2 \frac{_{}^{3}\textrm{C}_{2}\times _{}^{7}\textrm{C}_{2}}{_{}^{10}\textrm{C}_{4}}=\frac{63}{210} \frac{126}{210} \frac{126}{210}
3 \frac{_{}^{3}\textrm{C}_{3}\times _{}^{7}\textrm{C}_{1}}{_{}^{10}\textrm{C}_{4}}=\frac{7}{210} \frac{21}{210} \frac{63}{210}

Here, X_i  is the number of rotten apples.

And p_i  is the probability of a rotten apple.

We know that: 

Mean, \mu=\sum p_iX_i

0+\frac{105}{210}+\frac{126}{210}+\frac{21}{210}

=\frac{252}{210}=\frac{6}{5}

Variance, \left(\sigma^2\right)=\left(\sum p_i\left(x_i\right)^2\right)-\mu^2

Or,   \frac{105}{210}+\frac{252}{210}+\frac{63}{210}-\frac{36}{25}

            \frac{1}{2}+\frac{12}{10}+\frac{3}{10}-\frac{36}{25}=\frac{14}{25}

Or,     10\left(\mu^2+\sigma^2\right)

Or,     10\left\{\left(\frac{6}{5}\right)^2+\frac{14}{25}\right\}

Or,     10\times\frac{50}{25}=20

 

 

 

 

Option: 1

20


Option: 2

30


Option: 3

250


Option: 4

25


Answers (1)

 

X_i

p_i p_ix_i p_i\left(x_i\right)^2
0      
1      
2      
3      

 

Posted by

Kshitij

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE