The smallest natural number n , such that the coefficient of x in

the expansion of (x^{2}+\frac{1}{x^{3}})^{n} is   ^{n}C_{23}  , is : 

  • Option 1)

    38

  • Option 2)

    58

  • Option 3)

    23

  • Option 4)

    35

 

Answers (1)

In  the expansion of (x^{2}+\frac{1}{x^{3}})^{n}

General term is T_{r+1}=_{r}^{n}C\textrm{}(x^{2})^{(n-r)}(\frac{1}{x^{3}})^{r}

                                    =_{r}^{n}C\textrm{}(x^{2n-5r})

For coefficient of x , 2n-5r=1

                                 r=\frac{2n-1}{5}

So, we have ^{n}\textrm{C}_{\frac{2n-1}{5}} =^{n}\textrm{C}_{23}=^{n}\textrm{C}_{n-23}

  => \frac{2n-1}{5}=23 =>n=58

=>  \frac{2n-1}{5}=n-23 =>n=38

The minimum value of n be 38.

So, option (1) is correct.


Option 1)

38

Option 2)

58

Option 3)

23

Option 4)

35

Latest Asked Questions

Most Viewed Questions

Preparation Products

Knockout JEE Main (Six Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Expert Mentorship, - Study Improvement Plan.

₹ 9999/- ₹ 8499/-
Buy Now
Knockout JEE Main (Nine Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Expert Mentorship, - Study Improvement Plan.

₹ 13999/- ₹ 12499/-
Buy Now
Knockout JEE Main (One Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Expert Mentorship, - Study Improvement Plan.

₹ 2999/- ₹ 1999/-
Buy Now
Knockout JEE Main (Twelve Months Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Expert Mentorship, - Study Improvement Plan.

₹ 19999/- ₹ 14499/-
Buy Now
Knockout JEE Main (Eight Months Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Expert Mentorship, - Study Improvement Plan.

₹ 15999/- ₹ 12499/-
Buy Now
Boost your Preparation for JEE Main 2021 with Personlized Coaching
 
Exams
Articles
Questions