Get Answers to all your Questions

header-bg qa

A variable circle passes through the fixed point A(p,q) and touches x-axis.  The locus of the other end of the diameter through A is

  • Option 1)


  • Option 2)


  • Option 3)


  • Option 4)



Answers (1)


As we learnt in

Equation of a circle -

\left ( x-h \right )^{2}+\left ( y-k \right )^{2}= r^{2}

- wherein

Circle with centre \left ( h,k \right ) and radius r.



Circle touching x-axis and having radius r -

x^{2}+y^{2}\pm 2rx+2fy+f^{2}= 0

- wherein

Where f is a variable parameter.


 Let the other diametric end be P(h,k)

So centre is \left (\frac{p+h}{2},\frac{q+R}{2} \right )

Radius =\sqrt{\left(\frac{h-p}{2} \right )^{2}+\left(\frac{k-q}{2} \right )^{2}}

For circle touching x-axis, radius =\left(\frac{q+k}{2} \right )

So\; \left(\frac{h-p}{2} \right )^{2}+\left(\frac{k-q}{2} \right )^{2}=\left(\frac{k+q}{2} \right )^{2}

we get (h-p)2=4kg 

i.e. (x-p)2=4qy. a parabola 


Option 1)


This option is incorrect 

Option 2)


This option is incorrect 

Option 3)


This option is correct 

Option 4)


This option is incorrect 

Posted by


View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE