Get Answers to all your Questions

header-bg qa

Two concentric circular coils with radii 1 cm and 1000 cm, and number of turns 10 and 200 respectively are
placed coaxially with centers coinciding. The mutual inductance of this arrangement will be _______ × 10-8 H.

(Take , \pi^{2} = 10)

                                              

Option: 1

4


Option: 2

-


Option: 3

-


Option: 4

-


Answers (1)

best_answer

Given
a = 1000 cm
b = 1 cm
or b << a
we will take larger coil as primary

\begin{aligned} & B=\frac{\mu_0 i_p N}{2 a} \\ & \text { flux } \phi_s=B A=\frac{\mu_0 i_p N}{2 a} \times \pi b^2 \times n \end{aligned}

Mutual inductance M =\frac{\phi_{\mathrm{s}}}{i_{\mathrm{p}}}

\begin{aligned} & \mathrm{M}=\frac{\mu_0 \mathrm{Nn} \pi \mathrm{b}^2}{2 \times \mathrm{a}} \\ & \text { or } \mathrm{M}=\frac{4 \pi \times 10^{-7} \times 200 \times 10 \times \pi \times 1 \times 10^{-4}}{2 \times 1000 \times 10^{-2}} \\ & =4 \pi^2 \times 10^{-9} \end{aligned}

or M = 4\times 10^{-8}
(usin \pi^{2}= 10)

Posted by

Devendra Khairwa

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE