#### Two different coils have self-inductance $\mathrm{L_1=8 m H, L_2=2 m H .}$. The current in one coil is increased at a constant rate. The current in the second coil is also increased at the same rate. At a certain instant of time, the power given to the two coils is the same. At that time the current, the induced voltage and the energy stored in the first coil are $\mathrm{\dot{i}_1,\quad V_1 \text { and } W_1}$ respectively. Corresponding values for the second coil at the same instant are $\mathrm{\dot{i}_2,\quad V_2\text { and } W_2}$ respectively. Then choose incorrect optionOption: 1 $\mathrm{\frac{\mathrm{i}_1}{\mathrm{i}_2}=\frac{1}{4}}$Option: 2 $\mathrm{\frac{\mathrm{i}_1}{\mathrm{i}_2}=4}$Option: 3 $\mathrm{\frac{W_2}{W_1}=4}$Option: 4 $\mathrm{\frac{V_2}{V_1}=\frac{1}{4}}$

$\mathrm{\text { By }|\mathrm{e}|=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{e}_1}{\mathrm{e}_2}=\frac{\mathrm{L}_1}{\mathrm{~L}_2}\left\{\frac{\mathrm{di}}{\mathrm{dt}}-\text { same }\right\} \quad \Rightarrow \frac{\mathrm{V}_1}{\mathrm{~V}_2}=\frac{8}{2}=4}$

$\mathrm{\text { Power } P=e i \Rightarrow i \propto \frac{1}{e} \quad\{P \text {-same }\} \quad \Rightarrow \frac{i_1}{i_2}=\frac{e_2}{e_1}=\frac{V_2}{V_1}=\frac{L_2}{L_1}=\frac{2}{8}=\frac{1}{4}}$

$\mathrm{\text { Energy stored } \mathrm{W}=\frac{1}{2} \mathrm{Li}^2 ; \frac{\mathrm{W}_1}{\mathrm{~W}_2}=\frac{\mathrm{L}_1}{\mathrm{~L}_2} \times\left(\frac{\mathrm{i}_1}{\mathrm{i}_2}\right)^2=4 \times\left(\frac{1}{4}\right)^2=\frac{1}{4} \text {. }}$