Get Answers to all your Questions

header-bg qa

Two identical positive charges \mathrm{ Q} each are fixed at a distance of \mathrm{ ' 2 \mathrm{a} '} apart from each other. Another point charge \mathrm{ \mathrm{q}_{0}} with mass \mathrm{ ' \mathrm{m} '} is placed at midpoint between two fixed charges. For a small displacement along the line joining the fixed charges, the charge \mathrm{ \mathrm{q}_{0}} executes SHM. The time period of oscillation of charge \mathrm{q}_{0} will be :

Option: 1

\mathrm{\sqrt{\frac{4 \pi^{3} \varepsilon_{0} m a^{3}}{q_{0} Q}}}


Option: 2

\mathrm{\sqrt{\frac{q_{0} Q}{4 \pi^{3} \varepsilon_{0} m a^{3}}}}


Option: 3

\mathrm{\sqrt{\frac{2 \pi^{2} \varepsilon_{0} m a^{3}}{q_{0} Q}}}


Option: 4

\mathrm{\sqrt{\frac{8 \pi^{3} \varepsilon_{0} m a^{3}}{q_{0} Q}}}


Answers (1)

best_answer

If change \mathrm{q_{o}} is displaced by \mathrm{x} from point A to B

\mathrm{F_{2}=\frac{KQq_{o}}{\left (a-x \right )^{2}}}

\mathrm{F_{1}=\frac{KQq_{o}}{\left (a+x \right )^{2}}}

\mathrm{F_{net}=F_{2}-F_{1}}

\mathrm{=KQq_{0}\left [ \frac{1}{\left ( a-x \right )^{2}}-\frac{1}{\left ( a+x \right )^{2}} \right ]}

\mathrm{F_{\text {net }}=k Qq_0\left[\frac{4 a x}{\left(a^2-x^2\right)^2}\right]}

\mathrm{a_{\text {net }}=\frac{4 K Q q_0 a x}{m\left(a^2-x^2\right)^2}}

\mathrm{x<< a}

\mathrm{\therefore {a_{\text {net }}}=-\left(\frac{4 K Q q_0 a}{m a^4}\right){\mathrm{x}}}

\mathrm{\omega^2=\frac{4 K Q q_0}{m a^3}}

\mathrm{T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{m a^3}{4 k Q q_0}}}

\mathrm{T=2 \pi \sqrt{\frac{m a^3 \times 4 \pi \varepsilon_0}{4 Q q_0}}}

\mathrm{T=\sqrt{\frac{4 \pi^3 m a^3 \varepsilon_0}{Q q_0}}}

Hence 1 is correct option

Posted by

Kuldeep Maurya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE