Get Answers to all your Questions

header-bg qa

Two masses \mathrm{M_{1}} and \mathrm{M_{2}} are tied together at the two ends of a light inextensible string that passes over a frictionless pulley. When the mass \mathrm{ M_{2}} is twice that of \mathrm{ M_{1}, } the acceleration of the system is \mathrm{a_{1}. } When the mass \mathrm{M_{2}} is thrice that of \mathrm{M_{1},} the acceleration of the system is \mathrm{ a_{2}. }The ratio  \mathrm{\frac{a_{1}}{a_{2}} } will be :

Option: 1

\frac{1}{3}


Option: 2

\frac{2}{3}


Option: 3

\frac{3}{2}


Option: 4

\frac{1}{2}


Answers (1)

We know that,

\mathrm{ a=\frac{\left(M_2-M_1\right) }{\left(M_1+M_2\right)}g }

For case 1:

\mathrm{ a_{1}=\left ( \frac{\left(2M_2)-(M_1\right) }{\left(2M_1)+M_2\right)} \right )g }

for case 2:
\mathrm{ a_2=\left(\frac{3 M_1-M_1}{3 M_1+M_1}\right) g }

\mathrm{a_{2}=\frac{9}{2}}\rightarrow (2)

From the eq (1) & (2)

\mathrm{\frac{a_{1}}{a_{2}}=\frac{2}{3}}

Hence (2) is correct option.

Posted by

Ramraj Saini

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE