Get Answers to all your Questions

header-bg qa

Two sources of equal emfs are connected in series. This combination is connected to an external resistance \mathrm{\mathrm{R}. } The internal resistances of the two sources are \mathrm{\mathrm{r}_{1} } and \mathrm{r_{2} \left(r_{1}>r_{2}\right).} If the potential difference across the source of internal resistance \mathrm{r_{1}} is zero, then the value of \mathrm{\mathrm{R}} will be :

Option: 1

\mathrm{r_{1}-r_{2}}


Option: 2

\mathrm{\frac{r_{1} r_{2}}{r_{1}+r_{2}}}


Option: 3

\mathrm{\frac{r_{1}+r_{2}}{2}}


Option: 4

\mathrm{r_{2}-r_{1}}


Answers (1)

best_answer

Let the source of emf be e

\mathrm{I=\frac{2 e}{\left(R+r_1+r_2\right)} }

\mathrm{V=e-I r_1=0 \text { (Given) } }

\mathrm{O=e-\frac{2 e r_1}{\left(R+r_1+r_2\right)} }

\mathrm{1=\frac{2 r_1}{(\left.R+r_1+r_2\right)} }

\mathrm{(\left.R+r_1+r_2\right)=2 r_1 }

\mathrm{R+r_2=r_1 }

\mathrm{R=r_1-r_2}

Hence 1 is correct option.

Posted by

Ajit Kumar Dubey

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE