Get Answers to all your Questions

header-bg qa

Two thin prisms are combined to form an achromatic combination. For prism one A= 4^{\circ} ,\muR=1.35 , \mu\gamma=1.40, \muv=1.42. for prism two \muR'=1.7, \mu\gamma'=1.8

and  \muv'=1.9.The angle of prism  two is:

 

Option: 1

1.2


Option: 2

1.4.


Option: 3

1.6.


Option: 4

1.8.


Answers (1)

best_answer

As we learn

Condition for deviation without dispersion -

\left.(\mu_v-\mu_r\right) A+\left(\mu_v^{\prime}-{ }^{\prime} u_r\right) A^{\prime}=0

 - wherein

\mu _{v} = Refractive index of violet ( prism 1)

\mu _{r}= The refractive index of red ( prism 1)

\mu{}' _{v} = Refractive index of violet ( prism 2)

\mu{}' _{r}= The refractive index of red ( prism 2)

The condition of achromatic combination is

 \left ( \mu _{v}-\mu_{r} \right )A=\left ( \mu _{v}^{'} -\mu_{r} ^{'}\right )A^{'}

A=\frac{\left ( 1.42-1.35 \right )*4^{\circ}}{1.9-1.7}=1.4^{\circ}

 

Posted by

Kuldeep Maurya

View full answer