Get Answers to all your Questions

header-bg qa

Using the method of L’ Hospital, evaluate the limit.

\lim _{x \rightarrow 0} \frac{(\sqrt[4]{a})^x+\log _e(1+x)-\left(e^2\right)^x}{x}

Option: 1

\frac{\ln a}{4}


Option: 2

\frac{\ln a}{4}+1


Option: 3

\frac{\ln a}{4}-2


Option: 4

\frac{\ln a}{4}-1


Answers (1)

best_answer

Apply the L' Hospital's Rule, when   \lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\frac{0}{0}, \frac{\infty}{\infty}, \text { etc. }  [an intermediate form] in the following way

  • Differentiate  \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} , provided that the limit  \lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}  exists.

  • Otherwise, go on differentiating till the limit with the determinate form is achieved.

The provided limit is

\lim _{x \rightarrow 0} \frac{(\sqrt[4]{a})^x+\log _e(1+x)-\left(e^2\right)^x}{x}=\frac{0}{0}

 

Here use the L’ Hospital rule and also refer to the following formula.

\begin{aligned} & \frac{d}{d x}\left(e^{a x}\right)=a e^{a x} \\ & \frac{d}{d x}\left(b^x\right)=b^x \ln b \\ & \frac{d}{d x}\left(\log _e x\right)=\frac{1}{x} \end{aligned}

Now, derive the following:

\begin{aligned} & \lim _{x \rightarrow 0} \frac{(\sqrt[4]{a})^x+\log _e(1+x)-\left(e^2\right)^x}{x} \\ & =\lim _{x \rightarrow 0} \frac{a^{\frac{x}{4}}+\log _e(1+x)-e^{2 x}}{x} \\ & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(a^x+\log _e(1+x)-e^{2 x}\right)}{\frac{d}{d x}(x)} \end{aligned}

\begin{aligned} & =\lim _{x \rightarrow 0} \frac{\frac{1}{4} a^{\frac{x}{4}} \ln a+\frac{1}{(1+x)}-2 e^{2 x}}{1}\left[\text { } \frac{d}{d x}\left(b^x\right)=b^x \ln b, \frac{d}{d x}\left(\log _e x\right)=\frac{1}{x}, \frac{d}{d x}\left(e^{a x}\right)=a e^{a x}\right] \\ & =\frac{1}{4} \times \ln \ln a+1-2 \times 1 \\ & =\frac{\ln a}{4}-1 \end{aligned}

 

Posted by

manish painkra

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE