Get Answers to all your Questions

header-bg qa

Volume of parallelopiped with its co terminus edges along vectors \vec a , \vec b \: \: and \: \: \vec c  is 24 cubic units , then volume of tetrahedron having its vertices with position \vec 0 , \vec a + \vec b , \vec b + \vec c ,\vec c + \vec a willbe 

Option: 1

4


Option: 2

6


Option: 3

8


Option: 4

12


Answers (1)

best_answer

As we have learned

Properties of Scalar Triple Product -

\left [ \vec{a}+\vec{b}\:\:\vec{b} +\vec{c}\:\:\vec{c} +\vec{a} \right ]= 2\left [ \vec{a}\vec{b} \vec{c}\right ]

- wherein

\vec{a}, \vec{b}, \vec{c}are three vectors

 

 Given |[\vec a\; \; \vec b\; \; \vec c]|=24 

Required volume = |1/6[\vec a+ \vec b\; \; \vec b + \vec c\; \; \vec c+ \vec a]|=|1/3 [\vec a \; \vec b\; \vec c ]|= 8

 

 

 

 

 

 

Posted by

qnaprep

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE