Get Answers to all your Questions

header-bg qa

Water is being filled at the rate of \mathrm{1cm^{3}/sec} in a right circular conical vessel ( vertex downwards ) of height \mathrm{35cm} and diameter \mathrm{14cm}. Whe the height of the water level is \mathrm{10cm}, the rate ( in \mathrm{cm^{2}/sec} ) at which the wet coical surface area of the vessel increases is

Option: 1

\mathrm {5}


Option: 2

\mathrm{\frac{\sqrt{21}}{5}}


Option: 3

\mathrm{\frac{\sqrt{26}}{5}}


Option: 4

\mathrm{\frac{\sqrt{26}}{10}}


Answers (1)

best_answer

Let the volume of the cone be \mathrm{V \: cm^{3}}

Given  \mathrm{\frac{dV}{dt}=1cm^{3}/sec,h=35cm,r= 7cm}\\

i.e     \mathrm{\frac{h}{r}=5}\\

We  know for a cone \mathrm{l^{2}=r^{2}+h}\\

Lateral Surface area,

\mathrm{S=\pi r\sqrt{r^{2}+h^{2}}}\\

\mathrm{S=\pi\frac{h}{5}\sqrt{\frac{h^{2}}{25}+h^{2}}}=\mathrm{\pi\frac{\sqrt{26}}{25}h^{2}}\\

\mathrm{V=\frac{1}{3}\pi r^{2}h\frac{1}{3}\pi \left ( \frac{h}{5} \right )^{2}h =\frac{\pi}{75}h^{3}}\\

\Rightarrow\mathrm{\frac{dV}{dt}=\frac{\pi}{25}h^{2}\frac{dh}{dt}}\Rightarrow\mathrm{\frac{\pi}{25}h^{2}\frac{dh}{dt}=1}\\

\Rightarrow\mathrm{\frac{dh}{dt}=\frac{25}{\pi h^{2}}}\\                 .........(1)

\mathrm{\frac{ds}{dt}=\frac{\pi\sqrt{26}}{25}\times 2h\frac{dh}{dt}=\frac{2\sqrt{26}}{h}}\\          ..........from eqn(1)

\mathrm{\left ( \frac{ds}{dt} \right )_{h=10}=\frac{\sqrt{26}}{5}}

Hence the correct answer is option 3

Posted by

Rishi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE