Get Answers to all your Questions

header-bg qa

What is the minimum energy required to launch a satellite of mass m from the surface of a planet of mass M and radius R in a circular orbit at an altitude of 2R ?

 

Option: 1

\frac{GmM}{3R}


Option: 2

\frac{5GmM}{6R}


Option: 3

\frac{2GmM}{3R}


Option: 4

\frac{GmM}{2R}


Answers (1)

best_answer

 

Work done in changing the orbit -

W=E_{2}-E_{1}

W=\frac{GMm}{2}\left [ \frac{1}{r_{1}}-\frac{1}{r_{2}} \right ]

W\rightarrow work\: done

r_{1}\rightarrow radius\: of\: 1st\: orbit

r_{2}\rightarrow radius\: of\: 2nd\: orbit

- wherein

When satellite is transferred to higher orbit 

\left ( r_{2}>r_{1} \right )

Use given equation

 

Let k.i= 0 at surface and we providing minimum energy E_{min} to launch satellite

So 

 

E_{i} =E_{min}+ k.i +p.i =E_{min}+ 0 + \frac{-GMm}{R} = E_{min}-\frac{GMm}{R}

the velocity of the satellite a distance 2 R from the surface of the planet total oneggy of the satellite.

  E_{f} = \frac{1}{2} mv^2 - \frac{GMm}{\left ( R+2R \right )}

E_{f} = \frac{1}{2}m (\sqrt{\frac{GM}{R+2R}})^{2}- \frac{GMm}{3R}

= \frac{1}{2} \frac{Gmm}{3R} - \frac{Gmm}{3R} = -\frac{Gmm}{6R}

\therefore minnimum energy required to launch setelite

Apply energy conservation

So E_{f} =E_{i}

 

E_{min} = E_{f} -E _{i} = \frac{-GMm}{6R} -( \frac{-GMm}{R})

= \frac{-GMm}{6R} +\frac{GMm}{R}

= \frac{5GMm}{6R}

 Ans \left ( 2 \right )

Posted by

HARSH KANKARIA

View full answer

Similar Questions