Get Answers to all your Questions

header-bg qa

f(x)=x^{2}+bx+c   , where b,c \:\varepsilon \:R  ,if  f(x) is a factor of both x^{4}+6x^{2}+25\:\:and\:\:3x^{4}+4x^{2}+28x+5 then the least value of  f(x)  is

Option: 1 2

Option: 2 3

Option: 3 2.5

Option: 4 4

Answers (1)

best_answer

 

Quadratic Expression -

f\left ( x \right )= ax^{2}+bx+c

- wherein

a\neq 0

a,b,c\in R,\: \:

 

 

Condition for both roots common -

\frac{a}{{a}'}=\frac{b}{{b}'}=\frac{c}{{c}'}
 

- wherein

ax^{2}+bx+c=0 &

a'x^{2}+b'x+c'=0

are the 2 equations

 

 

(x^{2}+bx+c).P(x)=3x^{4}+18x^{2}+75....................(i)

(x^{2}+bx+c).Q(x)=3x^{4}+4x^{2}+28x+5....................(ii)

equation (i) – (ii)

(x^{2}+bx+c).(P(x)-Q(x))=14x^{2}+28x+70

                                                         =14(x^{2}-2x+5)

x^{2}+bx+c=x^{2}-2x+5

hence f(x)=x^{2}-2x+5

                       =(x-1)^{2}+4

                  min\:\:\left ( f(x) \right )=4

Posted by

Ritika Jonwal

View full answer