Get Answers to all your Questions

header-bg qa

Which of the following functions is differentiable at \mathrm{x=0} ?
 

Option: 1

\mathrm{e^{|x|}+|x|^2}

 


Option: 2

\mathrm{e^{|x|}-|x|^2}
 


Option: 3

\mathrm{\tan (|x|)+|x|}
 


Option: 4

\mathrm{\tan (|x|)-|x|}


Answers (1)

best_answer

Linear combination of one differentiable and one non-differentiable function is always non-differentiable.

Hence (a) and (b) are wrong.

\mathrm{Now, \tan (|x|)-|x|=\frac{|x|^3}{3}+\frac{2|x|^5}{15}+\ldots \ldots . \quad \text{is differentiable at}\: x=0,}

\mathrm{where\: as \tan (|x|)+|x|=2|x|+\frac{|x|^3}{3}+\frac{2|x|^5}{15}+\ldots \ldots .. \text{is not differentiable at }\: x=0}

\mathrm{[\mid x \mid\: is \: not\: dff. \: at \: x=0]}

Hence option 4 is correct.


 

 

Posted by

Ritika Jonwal

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE